Home | Schedule and Homework |
Schedule of Lectures: Fall 2013
Week
Date Topic Section Exercises Homework and Tutorials
09.09 Introduction: flux density   Introductory notes 1 10.09 Review: Functions of several variables 16.1 1-5 12.09 Multiple Integrals 16.1,16.2 16.1, 6-8; 16.2, 1-5 problem set #1 16.09 Iterated integrals I 16.2 6-10, 13-14,24 solutions #1 2 17.09 Iterated integrals II 16.2 16-21,26-28 problem set #2
19.09 Triple Integrals. 16.3 5-8,14-17,24-25 Tutorial #1 23.09 Double integrals in Polar coordinates 16.4 tutorial solutions #1 3 24.09 Integrals in cylindrical coordinates 16.5 26-39, 51 problem set #3 26.09 Spherical coordinates. Probability I 16.5-16.6 16.5, 1-8, 21-26, 27-29 Tutorial #2 30.09 Applications. First midterm exam covers material up to and including this section. 16.6 Review exercises: chapter 16, page 871. 26-32 Tutorial solutions #2 4 01.10 Parameterized curves 17.1 9-22, 45-49 problem set #4 03.10 Motion, velocity. Midterm 7pm, Etherington Hall Auditorium 17.1 1-9, 16-27,31,69,70 Tutorial #3 with solutions 07.10 Arclength, unit tangent vector. Reparameterization of curves. Orientation. 17.2 7-11,26-30,43 Midterm exam 1 solutions 5 08.10 Motion, velocity II. Vector fields, flow lines 17.2,17.3 17.2:48,49,50,51,54-56. 17.3:1-4, 7-10,34,35 problem set #5 10.10 Gradient Fields, lines of steepest descent. 17.3,17.4 17.3: 11-14,20,21,27,28,29 17.4:4-7,15,16 Tutorial #4 14.10 Thanksgiving solutions #4 6 15.10 Gradient fields II 17.3,17.4 17.4:19-20, 24,25,28,29 problem set #6 17.10 Parameterizing surfaces I 17.5 2-9,11-16,21-28 Tutorial #5 21.10 Line integrals I 18.1, 18.2 18.1: 1-18, 27,28,29,37,38 Tutorial solutions #5 7 22.10 Line integrls II 18.2 1-25,32,33,42,43 Tutorial #6 24.10 Gradient fields and path independence I 18.3 1-10 Tutorial #7 28.10 Constructing the potential function 18.3 6-22 solutions #6 8 29.10 Path independence implies gradient field. Circulation of vector fields 18.3, 18.4 18.4 1-10 problem set #8 31.10 Green's Theorem I. Curl test for conservative fields.Area using Green's Theorem. 18.4 11-17, 26,27,28. Tutorial #8(excuse the repetition!)
04.11 Green's Theorem II, divergence of planar vector fields. 18.4 18-28 solutions #7 9
05.11 Parameterized surfaces. Area 17.5 17.5, 1-14 Tutorial #8 solutions 07.11 Midterm Exam 7-8:30 Etherington Hall Auditorium FAQ
07.11 Flux across boundary of region, planar case. Green's Theorem 18.4 1-15 solutions of the midterm Tutorial #9
11.11 Flux across a planar surface: Fluid flow rate. 19.1 1-15, 16-24 solutions #9 10
12.11 Flux integrals II: Heat flux, chemical diffusion. Flux across membrane. 19.2 problem set #10
14.11 Surface integrals on graphs 19.2 7.1: 19-29, 7.2: 1-24 Tutorial #10 19.11 Surface integrals on cylinders 19.2 solutions #10 11
21.11 Surface integrals on spheres 19.2 6-9 problem set #11
22.11 Divergence Theorem 19.3, 19.4 14,16,18 Tutorial #11
26.11 Curl again. Stoke's Theorem 20.1,20.2 1-5,10-13 solutions #11 12
28.11 Stokes Theorem and circulation 20.2, 20.3 problem set #12
29.11 Geometry of divergence and curl 20.3 19-28 solutions #12 12.12 **NEW**Review I 2pm-4pm Jeffrey128 December Exam FAQ 04.12 Last years final to appear here for review December Exam 2012 18.12 Final Exam 2-5 TBA 08.12 Final Exam 2-5 TBA 14.02 Continuous functions 4.4 18-25 Solutions #5