Galois Theory (lectures)

cubic equation
Evariste Galois
Group Theory
lattice of subfields
Date Topic Links
2026.01.05 Introduction
2026.01.06 Cubic equations notes01
2026.01.08 Over the real numbers problems01
2026.01.12 Polynomials in several variables
2026.01.13 Symmetric polynomials notes02
2026.01.15 The discriminant problems02
2026.01.19 Existence of roots
2026.01.20 Fundamental theorem of algebra notes03
2026.01.22 Field extensions problems03
2026.01.26 Irreducible polynomials
2026.01.27 Prime radicals notes04
2026.01.29 Degree of an extension problems04
2026.02.02 Algebraic extensions
2026.02.03 Splitting fields notes05
2026.02.05 Normal extensions problems05
2026.02.09 Separable extensions
2026.02.10 Theorem of the primitive element notes06
2026.02.12 Definition of the Galois group problems06
Winter break
2026.02.23 Galois groups of splitting fields
2026.02.24 Permutations of roots notes07
2026.02.24 Midterm
2026.02.26 Examples of Galois groups problems07
2026.03.02 Galois extensions
2026.03.03 Conjugate fields notes08
2026.03.05 Normal subgroups and normal extensions problems08
2026.03.09 Fundamental theorem of Galois theory
2026.03.10 First applications notes09
2026.03.12 Solvable groups problems09
2026.03.16 Radical and solvable extensions
2026.03.17 Solvable extensions and solvable groups notes10
2026.03.19 Simple groups problems10
2026.03.23 Solving polynomials by radicals
2026.03.24 Cyclotomic polynomials notes11
2026.03.26 Roots of unity problems11
2026.03.30 Geometric constructions
2026.03.31 Constructible numbers notes12
2026.04.02 Review problems12
2026.04.?? Exam TBD