Galois Theory (lectures)

cubic equation
Evariste Galois
Group Theory
lattice of subfields
Date Topic Links
2026.01.05 Introduction
2026.01.06 Cubic equations notes01
2026.01.08 Over the real numbers problems01
2026.01.12 Polynomials in several variables
2026.01.13 Symmetric polynomials notes02
2026.01.15 The discriminant problems02
2026.01.19 Existence of roots solutions02
2026.01.20 Fundamental theorem of algebra notes03
2026.01.22 Minimal polynomials problems03
2026.01.26 Snow Day solutions03
2026.01.27 Adjoining elements notes04
2026.01.29 Irreducible polynomials problems04
2026.02.02 Degree of an extension solutions04
2026.02.03 Algebraic extensions notes05
2026.02.05 Splitting fields problems05
2026.02.09 Normal extensions solutions05
2026.02.10 Separable extensions notes06
2026.02.12 Theorem of the primitive element problems06
Winter break
2026.02.23 Definition of the Galois group solutions06
2026.02.24 Galois groups of splitting fields notes07
2026.02.24 Midterm
2026.02.26 Permutations of roots problems07
2026.03.02 Examples of Galois groups solutions07
2026.03.03 Galois extensions notes08
2026.03.05 Conjugate fieldss problems08
2026.03.09 Normal subgroups and normal extension solutions08
2026.03.10 Fundamental theorem of Galois theory notes09
2026.03.12 First applications problems09
2026.03.16 Solvable groups solutions09
2026.03.17 Radical and solvable extensions notes10
2026.03.19 Solvable extensions and solvable groups problems10
2026.03.23 Solving polynomials by radicals solutions10
2026.03.24 Cyclotomic polynomials notes11
2026.03.26 Roots of unity problems11
2026.03.30 Geometric constructions solutions11
2026.03.31 Constructible numbers notes12
2026.04.02 Review problems12
2026.04.?? Exam TBD