Rings and Fields (lectures)

Emmy Noether
quadratic integers
Equivalence class
quotient ring
Date Topic Read Links
2025.01.06 Induction
2025.01.08 Peano arithmetic §1.1 notes01
2025.01.09 Well-ordering principle §1.1 problems01
2025.01.13 Equivalence relations §2.1
2025.01.15 Negative integers §1.2 notes02
2025.01.16 Division with remainder §1.3 problems02
2025.01.20 Euclidean algorithm §1.4
2025.01.22 Congruence §2.2 notes03
2025.01.23 Modular arithmetic §2.3–2.4 problems03
2025.01.27 Fermat's Little Theorem §2.5
2025.01.29 Rings §3.1–3.2 notes04
2025.01.30 Subrings §4.2 problems04
2025.02.03 Domains and Fields §3.3
2025.02.05 Polynomials §7.1 notes05
2025.02.06 Roots §7.2 problems05
2025.02.10 Ring homomorphisms §4.3
2025.02.12 Ideals §5.1–5.2 notes06
2025.02.13 Quotient Rings §5.3–5.4 problems06
2025.02.13 Midterm
Winter break
2025.02.24 Isomorphisms §4.4 solutions06
2025.02.26 First isomorphism theorem §5.5 notes07
2025.02.27 Ideals in a quotient §5.7 problems07
2025.03.03 Direct decomposition of a ring §5.6 solutions07
2025.03.05 Rings of fractions §6.5 notes08
2025.03.06 Recognizing fields §13.1 problems08
2025.03.10 Prime ideals §6.1
2025.03.12 Euclidean domains §6.3 notes09
2025.03.13 Extended Euclidean algorithm problems09
2025.03.17 Principal ideal domains §6.2
2025.03.19 Unique factorization domains §6.4 notes10
2025.03.20 Non-Euclidean principal ideal domains problems10
2025.03.24 Factoring polynomials §7.3
2025.03.26 Irreducibility criteria §7.4 notes11
2025.03.27 Counting irreducibles §7.5 problems11
2025.03.31 Gaussian primes §10.4
2025.04.02 Sums of two squares §10.4 notes12
2025.04.03 Review problems12
2025.04.15 Extra tutorial (in 201 Jeffery Hall) 14:00–15:00
2025.04.16 Exam 19:00–22:00