Math 110 — Linear Algebra


Assignments are due on Thursday, at the beginning of class. The row that an assignment appears in is the day that it is due.

Blank spaces in the schedule are there because either (i) I haven't decided exactly what to do that day and/or (ii) I think that the earlier topics will require more time than allotted, and I'm saving those days as extra space.

  Date Topic Book Homework Practice Problems Tutorial Topic
Jan. 10 Introduction to determinants p. 283    
12 Axiomatic characterization of the determinant  
13 Multilinearity and determinants  
 
17 Calculating the determinant §4.2   1 – 15  
19 More determinant calculations §4.2 H1 .pdf   .ps   16 – 20, 22, 23, 26 – 29 Determinants
20 Determinant Practice A1 .pdf   .ps   T1 .pdf  
 
24 Properties of the determinant §4.2 35 – 38, 47 – 52
26 Bases and coordinates §6.3 H2 .pdf   .ps   1, 2, 3, 4 (part a only) Determinants II
27 Change of basis §6.3 A2 .pdf   .ps   1, 2, 3, 4 (parts b, c, d, e) T2 .pdf  
 
31 Change of basis II
Feb. 2 Iterating linear transformations §3.7 H3 .pdf   .ps   5 – 8, 10 Change of Basis
3 Eigenvalues and Eigenvectors §4.3 A3 .pdf   .ps   §4.1: 13–17 T3 .pdf  
 
7 Finding Eigenvalues and Eigenvectors §4.3 1–6 (parts a and b)
9 Diagonalization §4.4 H4 .pdf   .ps   5–7 Eigenstuff
10 Eigenspaces §4.3 A4 .pdf   .ps   1–6 (parts c and d) T4 .pdf  
 
14 More Diagonalization §4.4   8–15, 16–18
16 Similar Matrices §4.4 H5 .pdf   .ps   Diagonalization
17 Symmetry in Art A5 .pdf   .ps   T5 .pdf  
 
21
23 Reading Week
24
 
28 Complex Numbers App. C  
Mar. 2 Review for Midterm   H6 .pdf   .ps   Review
3 Complex Eigenvalues   A6 .pdf   .ps  
 
7 Dominant Eigenvalues §4.5   9–12
9 The Gerschgorin disk theorem §4.5 H7 .pdf   .ps   47–50 Complex eigenvalues
10 Some Eigenapplications §4.6 A7 .pdf   .ps   7–9 T6 .pdf  
 
14 Introduction to abstract vector spaces §6.1 5–10  
16 Subspaces, bases, coordinates §6.1-2 H8 .pdf   .ps   §6.1: 29, 33, 35, 36 Gerschgorin disks
17 Linear transformations §6.4 A8 .pdf   .ps   5, 7, 8, 16 T7 .pdf  
 
21 Dimension, Rank-nullity theorem §6.5   3, 4, 10, 12  
23 Isomorphisms and equality §6.5 H9 .pdf   .ps   21, 22, 28, 29 Abstract Stuff
24 Introduction to differential equations §6.7 A9 .pdf   .ps   T8 .pdf  
 
28 CDEs (Constant Coefficient Linear Differential Equations) §6.7  
30 Characteristic polynomial and compositions. §6.7 H10 .pdf   .ps     Differential Equations
31 The kernel and image of a CDE §6.7 A10 .pdf   .ps   5, 6, 10, 11, 12 T9 .pdf  
 
Apr. 4 The Kernel of a CDE      
6 Description of Kernel   H11 .pdf   .ps     CDEs
7 Review   A11 .pdf   .ps   T10 .pdf  
 
6   H12 .pdf   .ps